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Scalar plane waves in general relativity 
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Department of Applied Mathematics and Theoretical Physics, University of Cambridge, 
England 

Received 21 January 1982 

Abstract. A number of exact solutions of Einstein’s equations are obtained, which describe 
the collisions between one scalar plane wave and one scalar, neutrino, electromagnetic 
or gravitational plane wave. 

1. Introduction 

Nonlinearity in general relativity is most clearly shown by the interaction of two 
gravitational waves. Kahn and Penrose (1970) and Szekeres (1970) independently 
discovered the first exact solution representing the collision and found that the focusing 
effect of each wave on the other results in a singularity in space-time. Later, Bell 
and Szekeres (1974) found a solution for the gravitational interaction of two electro- 
magnetic waves. Gravitational impulse waves are produced as a result of two 
electromagentic shock waves in collision. Griffiths (1976a, b) has obtained an exact 
solution for two neutrino waves and considered collisions between any two types of 
gravitational, electromagnetic and neutrino waves. 

The problem treated in this paper consists of the gravitational collisions between 
two complex, massless, scalar plane waves. The motivation for this problem is as 
follows: it is believed that first-order phase transitions from an old false vacuum to a 
new real vacuum occurred in the very early universe. Bubbles of the real vacuum 
would have formed and expanded. The complex scalar field in any two bubbles of 
real vacuum must have the same magnitude but can have arbitrary phase. When two 
bubbles of different phase collide, two phase waves propagate out from the collision 
region at the speed of light (Hawking et a1 1981). These phase waves can each be 
approximated by a complex scalar, massless plane wave. The physical effects of 
collisions between phase waves from different bubble collisions may be as important 
as the bubble collisions themselves. For completeness we also give a number of exact 
solutions of Einstein’s equations which describe the collisions between one scalar 
plane wave and one neutrino, electromagnetic or gravitational plane wave. We use 
the method of Szekeres and Griffiths (Szekeres 1972, Griffiths 1976b). Following 
them, we derive the field equations in terms of the Newman-Penrose formalism 
(Newman and Penrose 1962) in 0 2. In § 3 an exact solution representing two 
interacting pure scalar plane waves is derived. Section 4 deals with the collisions 
between one scalar wave and a gravitational, electromagnetic or neutrino wave. 

t Permanent address: The University of Science and Technology of China, Hofei, Anhwei, The People’s 
Republic of China. 
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2. The field equations 

We may, without loss of generality, consider the 'head-on' collision of two waves, 
since an appropriate Lorentz transformation can always be found to make the incident 
waves approach from exactly opposite spatial directions. We choose space-time 
coordinates (U, U, x ,  y )  where x,  y are space-like coordinates in the surface perpen- 
dicular to the direction of motion and U, U are null. The equations U = constant and 
v = constant define the propagation of the two waves. It is assumed that they collide 
at U = 0, U = 0. 

In region I (U < 0, v < 0) the space-time is flat, 

ds2 = 2 du dv - (dX2 + dy2). (2.1) 

In region I1 ( U  >O, U <O) a plane wave propagates along U =constant. It is 

(2.2) 

convenient to transform the metric into Rosen (1931) form 

ds2 = 2e-M du dv - g,, dx2 - 2gx, dx dy - g,, dy2 

and all field quantities and M, gii are functions of U. 
Similarly in region I11 (U < 0, U > 0) another plane wave propagates along U = 

constant. All physical quantities can be expressed in the same way as in 11, by 
exchanging U and U. 

In region IV ( U  >O, U > 0), after the collision of the two wavefronts we assume 
that the metric can be expressed in the form (Szekeres 1974) 

d ~ ' = 2 e - ~  du dv-e-"(ev coshW dx2+e-VcoshW dy2-2sinhWdx dy) (2.3) 

where the field quantities and U, V, M, W, are all functions of (U, U). V, W represent 
the polarisation of gravitational disturbance. If V = W = 0, then the wave plane has 
plane symmetry ISO(2). 

Using Newman-Penrose formalism, the Einstein field equations can be expressed 
as 

U,, = UUU,-2@11-6h, (2.4) 

2U,, = U: + Wt + V: Cosh2 W -2U&l, +4@oo, (2.5) 

2U,, = U', + W', + V', cosh2 W - 2 U,M, + 4@22, (2.6) 

2M,,=-U,U,+ W,W,+ V,V, cosh2 W+8@11, (2.7) 
2W,,= U,W,+U,Wu+2V,V, sinh Wcosh W+2i(@02-@20), (2.8) 

(2V,,-U,V,-U,V,)cosh W+2(V,WU+ V,W,)sinh W=2(@02+@20). (2.9) 
The components of the Weyl tensor, which tell us whether gravitational radiation 

is present, are 

9 0 ~ - & V , ,  cosh W+2V,W, sinh W-V,(U,-M,)cosh W] 

+ $i[ W,, - W, (U, -Mu)  - V: cosh W sinh W] 

9 4 ~ - $ [ V , , c o ~ h  W+2VuW,sinh W-V,(U,-M,)cosh W] 

-$i[W,,-W,(U,-Mu)-V',cosh Wsinh W], 

q 2  = 

91 = P3 = 0. 

-&Vu W, - V, W,) cosh W], 

(2.10) 

(2.1 1) 

(2.12) 
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For all the cases considered in this paper we have @ o z = @ ~ o  and @11+3A=O, 
hence, for simplicity, we can assume W = O  which implies that the polarisations of 
two waves match up in such a way that the metric can be simultaneously diagonalised 
in regions I,  11, I11 and thus in region IV also (from the hyperbolic property of equation 
(2.8)). From equation (2.4) we obtain 

U = -ln(f(u)+g(v)), f(0) = d o )  = 3, . (2.13) 

where f ( u )  and g(v) are arbitrary functions. 
It should be noticed that equation (2.9) is just the integrability condition for 

equations (2.4H2.7). Thus we may concentrate on solving equation (2.9) and the 
Euler-Lagrange equations for scalar, neutrino or electromangetic fields respectively, 
obtaining M from (2.5) and (2.6) by simple integration. 

3. Colliding scalar waves 

Since the energy-momentum tensor of a complex, massless, scalar field is 

Tab = !dCPa@b + pb4a)  - $gabQc@ '9 (3.1) 

we can set cp = cpo (constant) in region I and 50 =cp(u)(cp(u))  in region I1 (111). The 
only non-vanishing Ricci tensor components are 

(3.2) @ - I  
11 - - 8 ( ~ i @ z +  4~241) = -A/3. c p - '  c p - '  

00 - -2CP141, 22 - -2cp241, 

p must satisfy the scalar wave equation 

CPU" -CPUUO - Q c ~ u  = 0. (3.3) 

Comparing equations (2.4), (2.9) with (3.9,  it is interesting to notice that U, V 
evolve in exactly the same way as the scalar field potential. To have incident waves 
which are purely scalar field waves, we can set V = 0 in regions I, 11, 111 (so from the 
hyperbolic property of equation (2.9) V = 0 in region IV), causing all the components 
of the Weyl tensor to vanish in regions I, I1 and 111. By a change of variables, f = f(u), 
g = g(v) the scalar wave equation (3.3) can be transformed into an Euler-Darboux 
equation 

2(f+g)cpf,+CPf+cpp =o. (3.4) 
In principle, it is possible to find the solution to equation (3.4) in region IV, using 
the Riemann-Green function method (Courant and Hilbert 1961), with given boun- 
dary conditions at U = 0, v > 0 and U = 0, U >O,  i.e. with known incident waves. 
However, more simply, by trial and error one finds the following explicit solution 

f-' 112 

(3.5) 
-1 g - 5  

cp = kl tan-'(+) g + s  + k 2  tan (G)1/2+cpo f +T (kl, k z ,  CPO complex). 

In region I1 we must have cp = cpl(f)  = kl tan-'(f-$)'/', and cp = q 2 ( g )  = 
k 2  tan-'(g -$)'I2 in region 111. The complete solution is expressed most compactly 
by putting 

p = ( f  -$)l'Z, q = ( g  r = ( f + f ) l / ' ,  w = ($+g) ' l2 ,  
(3.6) 

t = ( f + g ) ' l 2 ,  
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where 

f = 3+ (au)"ie(u), g = ++ (bu)"ze(U) 

and e ( x )  is the Heaviside step function. Then 

cp =/cltan- 1P -+k2tan-'9+cpo. 
W r 

Integration of equations (2.5) and (2.6) results in 

lkiI2 = 4(1- l /ni)  

and 

M = [I -3k1-k2)(kT - k z ) ]  In t +3k2l2 In y ++lk1l2 In w 

- $ ( k l k g  +k2kT) In ( ~ q  +rw). 

(3.7) 

(3.8) 

The space-time is Petrov type D in region IV and, by assumption, conformally flat 
in regions I1 and 111. 

4. Collisions between scalar wave and other fields 

In this section collisions between a scalar wave and a gravitational, electromagnetic 
or neutrino wave are considered. 

For the first case, let region I1 contain a plane scalar wave cp = q ( u )  and region 
I11 contain a gravitational wave qo = q o ( u ) .  The field equations remain the same as 
equations (2.4)-(2.9) and (3.4). It is easy to see that the following solution satisfies 
the required boundary conditions: 

1/2 

V = k2 tanh-'(&) f + $  ( k 2  real) 

(4.1) 

(4.2) 

where 

f = $ + ( a u ) " l e ( u ) ,  g = 4- (bV)"2e(v), (a, 6, nl, n2 real). 

As before these expressions can be simplified by putting 

p = (f-$)'/2, 4' = ($-g)1/2, r = ($+f)1'2, 

w = ( $ + g ) I I 2 ,  t = ( f  + g)'12. (4.3) 
In order that the Lichnerowicz (1955) conditions (the metric and its normal derivatives 
are continuous at the boundary) are satisfied at U = 0, we must have n2 1. Integration 
of equations (2.5) and (2.6) results in 

Iki12 = 4(1- 1/hi), k: = 8 ( l -  l / nz ) ,  

~ = ( l - $ k ~ k T  -ik22)lnt+ik22 Inr+l(kl)21n w. (4.4) 

In regions I, I1 space-time is flat and conformally flat respectively. In region 111, 
the only non-vanishing component of the Weyl tensor 90 represents (i) n2=4 
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( k 2  = -&): gravitational shock wave q O a e ( ~ ) ( t + g ) - 4 ,  (ii) n2 = 2 ( k 2  = -2): gravita- 
tional impulse wave q o a S ( v ) .  

For the second case region I11 contains an incident electromagnetic wave which 
contributes to the Ricci tensor by 

@AB = @ A @ B  (4.5) 

where the quantities cDl define the electromangetic field in Newman-Penrose for- 
malism. 

Maxwell's equation takes the form (Bell and Szekeres 1974) 

@l,u = U,%, 

%,U = --$VU@O+$U"@2, 

%U = U,@,, 

ao,, = -- 1 vu a2 + $Uu @o. (4.6) 
For simplicity, we assume @ I =  0, V = 0 and @Z = 0. These are necessary conditions 

to keep the space-time conformally flat before collision and electromagnetic-free in 
region 11. Equation (4.6) implies 

a0 = F ( g ) / ( f +  g)'? F($) = 0, (4.7) 
where F ( g )  is an arbitrary function. It is readily verified that the following constitute 
a solution of Einstein's equation and the scalar wave equation: 

f-' 1f2 

cp = kl  tan-'(+) +Po, 
2 + g  

M = ( 1 - ~ k 1 k ~ ) l n t + 2 ( 1 - 1 / n 2 ) l n q ' - 2  F 2 ( g ) d g + t k l k T  In w, 

M2 = 4 ~ -  1/n1), 
where f ,  g,  q', w, t, k l ,  n2 are defined as before. 

field can be expressed in spinor form 

I 
For the last case, region I11 contains an incident neutrino plane wave. The neutrino 

4~ = &A + &A. 

The neutrino Weyl equation takes the form (Griffiths 1976b) 

(4.8) ** =' 4 . u  = tuu4, ,U 2 U U &  

~ 0 0  = - J4.J 
001 =$[(64),u -($U, -$Mu)&-$Vu4J1, 

02 --i(-L - 2 vu4B + V&&, a11 = 0, 

@12=&(64),u -(-SUu +iMU)&+IVU4JI 

a 2 2  = i(46.u - & * U ) .  

The components of the Ricci tensor due to the neutrino field become (Griffiths 1976b) 

In order that the metric can take the Rosen form, the neutrino field must satisfy 
(Griffiths 1976a) 

d*=O 
which implies that the neutrino field is not reflected by the scalar field. We obtain 
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the following explicit solution of the scalar wave, neutrino wave and Einstein equations 

v=o, 

f - ;  112 

cp = kl tan-’(,> + cpo, kl = 4(1- l / n d  (kl, go complex) 
I + g  

where f, g, q’, w, t, kl, n2, nl are defined as before and F(g)  is an arbitrary function. 
We believe all these solutions to be new. 
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